Skip to contents

Setup

First, install and load the ASySD package.

# devtools::install_github("camaradesuk/ASySD")library(ASySD)
library(ASySD)

Loading citation data

Load citations from an existing search file using the load_search() function. In this example, we use a csv format.

existing_search <- load_search("old_sr_search.csv")

Load citations from a new systematic search.

new_search <- load_search("new_sr_search.csv")

Combine old and new citation data

Before deduplication, we must bind the citations into one dataframe. First, give each search a different source so that we can specify which citations to retain.

existing_search$source <- "old"
new_search$source <- "new"

all_citations <- plyr::rbind.fill(existing_search, new_search)

Automated deduplication

Remove duplicate citations automatically using the dedup_citations function. Here we have specified the argument merge=TRUE to indicate that we want to merge duplicate records and have a record of which citations have been merged into one. We have specified in the keep_source argument that we wish to preferentially retain old citations. In practice, this means that the duplicate_id chosen for a set of records will preferentially be the record_id of a citation in the OLD systematic search. This is to facilitate easy record linkage - see later.

results <- dedup_citations(all_citations, merge_citations = TRUE, keep_source = "old")
#> formatting data...
#> identifying potential duplicates...
#> identified duplicates!
#> flagging potential pairs for manual dedup...
#> Joining with `by = join_by(duplicate_id.x, duplicate_id.y)`
#> 8972 citations loaded...
#> 472 duplicate citations removed...
#> 8500 unique citations remaining!

The dedup_citations function returns a list of two dataframes by default. The first contains unique citations after duplicates were removed automatically by ASySD. In most cases, this will remove the vast majority of duplicates. There will likely be some duplicates remaining which need manual review by a human (see next step).

unique_citations <- results$unique

Manual deduplication

To check for additional duplicates, get the dataframe of citations for manual review. You can review within R or export as a csv / excel file to go through each row of pairs.

potential_duplicates <- results$manual_dedup

After reviewing the pairs, create a dataframe contianing only the true duplicate pairs. Here, all the suggested duplicates look like REAL duplicates. Alternatively, you could go through them one-by-one using the manual_dedup_shiny() function.

true_duplicates <- potential_duplicates

Now, to get the final deduplication results, use the dedup_citations_add_manual()function. To account for additional duplicates you have reviewed, add them into the additional_pairs argument.

final_results <- dedup_citations_add_manual(unique_citations, additional_pairs = true_duplicates, merge_citations = TRUE, keep_source = "old")
#> Joining with `by = join_by(record_id)`

Find new citations identified in update

Now we have a final set of unique citations, how can we find the new citations we added with our latest systematic search?

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
new_citations <- final_results %>%
  filter(source == "new") 

new_citations %>%
   tail(3) %>%
   gt::gt() %>%
   gt::cols_hide(c(abstract))
duplicate_id author year journal doi title pages volume number isbn label source url ...1 uid keywords secondarytitle issn pmid ptype author_country author_affiliation record_ids
wos:000931052000002 Lipton, Stuart A. 2022 FREE RADICAL BIOLOGY AND MEDICINE 10.1016/j.freeradbiomed.2022.10.272 Hidden networks of aberrant protein transnitrosylation contribute to synapse loss in Alzheimer's disease 171-176 193 NA NA 270223 new NA 5561 wos:000931052000002 NA NA 0891-5849 NA NA NA NA wos:000931052000002
wos:000931426100001 Marini, Sandro; Chung, Jaeyoon; Han, Xudong; Sun, Xinyu; Parodi, Livia; Farrer, Lindsay A.; Rosand, Jonathan; Romero, Jose Rafael; Anderson, Christopher D. 2023 INTERNATIONAL JOURNAL OF STROKE 10.1177/17474930231155816 Pleiotropy analysis between lobar intracerebral hemorrhage and CSF beta-amyloid highlights new and established associations NA NA NA NA 270223 new NA 9861 wos:000931426100001 ICH | beta-amyloid | pleiotropy | genetic epidemiology | cadherin | cerebral amyloid angiopathy NA 1747-4930 NA NA NA NA wos:000931426100001
wos:000932018500001 Walker, Keenan A.; Duggan, Michael R.; Gong, Zhaoyuan; Dark, Heather E.; Laporte, John P.; Faulkner, Mary E.; An, Yang; Lewis, Alexandria; Moghekar, Abhay R.; Resnick, Susan M.; Bouhrara, Mustapha 2023 ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY 10.1002/acn3.51730 Kidney and lung crosstalk during critical illness: large-scale cohort study (FEB, 10.1007/s40620-023-01594-z, 2023) NA NA NA NA 270223 new NA 6501 wos:000932018500001 NA NA 2328-9503 NA NA NA NA wos:000932018500001

Lets also have a look at the citations identified in both searches by removing citations with a single source.

crossover <- final_results %>%
  filter(!source == "new") %>%
  filter(!source == "old") 

crossover %>%
   tail(3) %>%
   gt::gt() %>%
   gt::cols_hide(c(abstract))
duplicate_id author year journal doi title pages volume number isbn label source url ...1 uid keywords secondarytitle issn pmid ptype author_country author_affiliation record_ids
wos:000919545100001 Larkin, Howard D. D. 2023 JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION 10.1001/jama.2022.24490 Lecanemab Gains FDA Approval for Early Alzheimer Disease 363 329 NA NA 270223, 270223 new, new NA 3271 wos:000919545100001 NA NA 0098-7484 36652625 Article NA NA wos:000919545100001, scopus-2-s2.0-85147720543
wos:000924510300006 Chen, Shanquan; Price, Annabel C.; Cardinal, Rudolf N.; Moylett, Sinead; Kershenbaum, Anne D.; Fitzgerald, James; Mueller, Christoph; Stewart, Robert; O'Brien, John T. 2022 PLOS MEDICINE 10.1371/journal.pmed.1004124 Association between antidementia medication use and mortality in people diagnosed with dementia with Lewy bodies in the UK: A retrospective cohort study NA 19 NA NA 270223, 270223 new, new NA 9981 wos:000924510300006 NA NA 1549-1277 NA NA NA NA wos:000924510300006, wos:000925010400002
wos:000928044600001 Wang, Lin-Yu; Liu, Jiao; Peng, Yi-Zhu; Zhang, Cai-Ping; Zou, Wei; Liu, Feng; Zhan, Ke-Bin; Zhang, Ping 2022 NATURAL PRODUCT COMMUNICATIONS 10.1177/1934578X221141162 Curcumin-Nicotinate Attenuates Hippocampal Synaptogenesis Dysfunction in Hyperlipidemia Rats by the BDNF/TrkB/CREB Pathway: Involving Idol/LDLR Signaling to Eliminate A beta Deposition NA 17 NA NA 270223, 270223 new, new NA 9791 wos:000928044600001 hyperlipidemia | high-fat diet | Curcumin-Nicotinate | amyloid-beta | BDNF | TrkB | CREB signaling | synaptogenesis | Idol/LDLR pathway NA 1934-578X NA NA NA NA wos:000928044600001, wos:000922862000001

To keep good records, we don’t want to lose track of identifiers for studies we have already included in a review. This is why specifying the citation to keep was important! To illustrate this, look specifically at the citations present in the old search.

old_citations <- final_results %>%
  filter(grepl("old", source)) # find all citations in old search

We can check that the duplicate ids here refer to the original record id in the existing_citations dataframe we imported. As you can see, they are all present. In the record_ids column you can see the different record_ids that have merged into a single citation. In case you make a mistake or don’t specify the record_id to keep as the duplicate_id, you can use these to trace back your citations to the original dataframes.

old_citations_check <- old_citations %>%
  filter(duplicate_id %in% existing_search$record_id) #check that all citations use the OLD record_id as the duplicate_id

crossover %>%
   tail(3) %>%
   gt::gt() %>%
   gt::cols_hide(c(abstract))
duplicate_id author year journal doi title pages volume number isbn label source url ...1 uid keywords secondarytitle issn pmid ptype author_country author_affiliation record_ids
wos:000919545100001 Larkin, Howard D. D. 2023 JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION 10.1001/jama.2022.24490 Lecanemab Gains FDA Approval for Early Alzheimer Disease 363 329 NA NA 270223, 270223 new, new NA 3271 wos:000919545100001 NA NA 0098-7484 36652625 Article NA NA wos:000919545100001, scopus-2-s2.0-85147720543
wos:000924510300006 Chen, Shanquan; Price, Annabel C.; Cardinal, Rudolf N.; Moylett, Sinead; Kershenbaum, Anne D.; Fitzgerald, James; Mueller, Christoph; Stewart, Robert; O'Brien, John T. 2022 PLOS MEDICINE 10.1371/journal.pmed.1004124 Association between antidementia medication use and mortality in people diagnosed with dementia with Lewy bodies in the UK: A retrospective cohort study NA 19 NA NA 270223, 270223 new, new NA 9981 wos:000924510300006 NA NA 1549-1277 NA NA NA NA wos:000924510300006, wos:000925010400002
wos:000928044600001 Wang, Lin-Yu; Liu, Jiao; Peng, Yi-Zhu; Zhang, Cai-Ping; Zou, Wei; Liu, Feng; Zhan, Ke-Bin; Zhang, Ping 2022 NATURAL PRODUCT COMMUNICATIONS 10.1177/1934578X221141162 Curcumin-Nicotinate Attenuates Hippocampal Synaptogenesis Dysfunction in Hyperlipidemia Rats by the BDNF/TrkB/CREB Pathway: Involving Idol/LDLR Signaling to Eliminate A beta Deposition NA 17 NA NA 270223, 270223 new, new NA 9791 wos:000928044600001 hyperlipidemia | high-fat diet | Curcumin-Nicotinate | amyloid-beta | BDNF | TrkB | CREB signaling | synaptogenesis | Idol/LDLR pathway NA 1934-578X NA NA NA NA wos:000928044600001, wos:000922862000001

Exporting results

Once deduplication is complete, you can export the new unique records to a file for import into reference managers or systematic review software.

write_citations(new_citations, type="txt", filename="unique.txt")